NSL OpenIR

浏览/检索结果: 共6条,第1-6条 帮助

已选(0)清除 条数/页:   排序方式:
Assessment and determinants of per capita household CO2 emissions (PHCEs) based on capital city level in China 期刊论文
Journal of Geographical Sciences, 2018, 卷号: 28, 期号: 10, 页码: 1467-1484
作者:  Lina, Liu (刘莉娜);  Jiansheng, Qu (曲建升);  Zhiqiang, Zhang (张志强);  Jingjing, Zeng (曾静静);  Jinping, Wang (王金平);  Liping, Dong (董利苹);  Huijuan, Pei (裴惠娟);  Qin, Liao (廖琴)
Adobe PDF(870Kb)  |  收藏  |  浏览/下载:21/0  |  提交时间:2018/12/28
household CO2 emissions (HCEs)  determinants  capital city level  China  
Spatial variations and determinants of per capita household CO2 emissions (PHCEs) in China 期刊论文
Sustainability, 2017, 卷号: 9, 期号: 7, 页码: 1277
作者:  Liu Lina(刘莉娜);  Qu Jiansheng(曲建升);  Clarke-Sather, Afton;  Maraseni, Tek Narayan;  Pang, Jiaxing
Adobe PDF(4159Kb)  |  收藏  |  浏览/下载:205/35  |  提交时间:2017/12/13
中国居民生活碳排放的区域差异及影响因素分析 期刊论文
自然资源学报, 2016, 卷号: 31, 期号: 8, 页码: 1364-1377
作者:  刘莉娜;  曲建升;  黄雨生;  王莉;  曾静静;  边悦
Adobe PDF(1457Kb)  |  收藏  |  浏览/下载:188/24  |  提交时间:2016/11/30
A comparison of trends and magnitudes of household carbon emissions between China, Canada and UK 期刊论文
Environmental Development, 2015, 期号: 15, 页码: 103-119
作者:  Tek Maraseni;  Qu Jiansheng(曲建升);  Zeng Jingjing(曾静静);  Maraseni Tek
Adobe PDF(398Kb)  |  收藏  |  浏览/下载:499/97  |  提交时间:2015/06/26
Household Carbon Emissions  China  Canada  Uk  
A Comparison of Household Carbon Emission Patterns of Urban and Rural China over the 17 Year Period (1995–2011) 期刊论文
Energies, 2015, 期号: 8, 页码: 10389-10409
作者:  Jiansheng Qu(曲建升);  Tek Maraseni;  Lina Liu(刘莉娜);  Zhiqiang Zhang(张志强);  Talal Yusaf
Adobe PDF(726Kb)  |  收藏  |  浏览/下载:490/118  |  提交时间:2015/09/24
A hybrid study of multiple contributors to per capita household CO2 emissions (HCEs) in China 期刊论文
Environmental Science and Pollution Research, 2015, 期号: 12, 页码: dio10.1007/s11356-015-5856-x
作者:  Jiansheng Qu(曲建升);  Shanshan Qin(秦珊珊);  Lina Liu(刘莉娜);  Jingjing Zeng(曾静静);  Yue Bian(边悦)
Adobe PDF(943Kb)  |  收藏  |  浏览/下载:337/74  |  提交时间:2015/12/09
Household Co2 Emissions (Hces)  Driving Factors  Correlation Analysis (Ca)  Gray Correlation Analysis (Gca)  Principle Component Regression (Pcr)