Mining Hot Research Topics based on Complex Network Analysis - A Case Study on Regenerative Medicine | |
Ceng RQ(曾荣强)1,3; Pang HS(庞弘燊)5![]() ![]() ![]() ![]() ![]() ![]() | |
2017-11 | |
会议名称 | the 9th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management |
会议日期 | 2017.11.1-2017.11.3 |
会议地点 | 葡萄牙丰沙尔 |
摘要 | In order to mine the hot research topics of a certain field, we propose a hypervolume-based selection algorithm based on the complex network analysis, which employs a hypervolume indicator to select the hot research topics from the network in the considered field. We carry out the experiments in the field of regenerative medicine, and the experimental results indicate that our proposed method can effectively find the hot research topics in this field. The performance analysis sheds lights on the ways to further improvements. |
关键词 | Hot Research Topics Modularity Function Regenerative Medicine Community Detection Hypervolume Indicator |
DOI | 10.5220/0006504802630268 |
语种 | 英语 |
引用统计 | |
文献类型 | 会议论文 |
条目标识符 | http://ir.las.ac.cn/handle/12502/9600 |
专题 | 中国科学院成都文献情报中心_信息技术部 |
通讯作者 | Hu ZY(胡正银) |
作者单位 | 1.中国科学院成都文献情报中心 2.中国科学院广州生物医药与健康研究院 3.西南交通大学 4.中国科学院文献情报中心 5.深圳大学 |
第一作者单位 | 中国科学院文献情报中心 |
推荐引用方式 GB/T 7714 | Ceng RQ,Pang HS,Tan XC,et al. Mining Hot Research Topics based on Complex Network Analysis - A Case Study on Regenerative Medicine[C],2017. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
KDIR_2017_29.pdf(597KB) | 会议论文 | 开放获取 | CC BY-NC-SA | 请求全文 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论