Map of Research Funding: Comparison of Networking and Embedding Graphs

CDKD 2018, Beijing, China

Ting Chen
Institutes Of Science And Development, CAS
CONTENTS

1. Introduction and Background
2. Create Labeled Test Dataset
3. Networking or Embedding
4. Applications of Funding Graph
5. Discussion
Introduction and Background

Why funding data?
Why funding data?

- A typical publishing process takes 2 to 4 years from applying for funds to publishing a paper. Then another 1~2 years waiting for citations;
- Published papers focus on the research details (hard to understand), whereas funding applications are more about describing the ideas and direction (easy to read);
- Funded awards have also been peer-reviewed, but fund-related data never receives the same attention as papers and patents (Data and analysis methods are both lacking)
Main funding analyze methods

<table>
<thead>
<tr>
<th>As an indicator</th>
<th>Funded papers</th>
<th>Clusters and Topics</th>
</tr>
</thead>
<tbody>
<tr>
<td>The funded data is used as an indicator of innovation by counting different institutions and countries;</td>
<td>Analysis agency’ funding layout by funded papers</td>
<td>Using the textual features of application and clustering algorithm or the topic model divide awards into the research topics;</td>
</tr>
</tbody>
</table>

There is often no visual display in existing funding analysis researches.
Existing funding maps

Why map?
- Exploration
- Evidence
- Support

The NIH Visual Browser: An Interactive Visualization of Biomedical Research, IEEE conf, Information Visualization, 2009

The Method of Research Front Topic Detection Based on the Fund Project Data, LIS, 2017
What is a good visualization map?

The Co-Author Network Graph Of 511 Researchers Within Erdos1
What is good visualization map?

by Boyack and Klavans (2013)
Create Labeled Test Dataset

We collected 4669 awards which were funded by NSF Information and Intelligent Systems department from 2008 to 2017.
Labeled Test Dataset

• Use k-means to divide 4669 awards into 70 small clusters, smaller clusters, better homogeneity;

• Human-read each cluster, combined similar clusters into one, made sure the test set also had good completeness;

• Total 21 topics have been labeled, we will test our mapping methods by using the 21 topic labels. Topics include NLP, data retrieval, database, image recognition, voice recognition, motion monitoring, robotics, brain-computer interface, etc.
Networking or Embedding?
Compared two graph methods
First Try: Network Graph

1. **Standard NLP**: Stop words, stemming and lemmatization, 2 or 3-gram phrase...;
2. **Feature extraction**: BOW tf-idf and topic model LDA;
3. **Create a network**: KNN model, $K=5, 10, 15$;
4. **Force direct layout**: Two most common medium-sized networks layouts Drl (OpenOrd in gephi) and Kamada-Kawai (KK) were applied;
tf-idf similarity Graphs (7000 features)

<table>
<thead>
<tr>
<th>DrI</th>
<th>KNN=15</th>
<th>KNN=10</th>
<th>KNN=5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>KK</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
LDA similarity Graphs (20 LDA features)
LDA similarity Graphs (20 LDA features)
The NIH Visual Browser: An Interactive Visualization of Biomedical Research

Topic Modeling and Clustering NIH Grants

Molecular/Cellular Biology

Neural Systems

Infectious Diseases & Microbiology

Vascular & Hematology

Musculoskeletal, Oral & Skin Sciences

Integrative, Functional, & Cognitive Neuroscience

Cell-Biology

Molecular, Cellular, & Developmental Neuroscience

Population Sciences & Epidemiology

Risk, Prevention & Health Behavior

Immunology & Infectious Diseases

Health Services

Red labels: global structure
Black labels – automatic, based on NIH review panels

nihmaps.org
Best graph:
• BOW-Tf-idf features
• K-Nearest neighbor K = 5
• Kamada-Kawai force direct layout
• Use it as a base map for this research

Pros
• Good global structure, some natural clusters appeared
• Degree, betweenness, centrality, etc
• Very fast

Cons:
• Poor topic-separability (the local detail)
• No real networks for funding data, we have to convert vector features into similarity network (distance matrix)
• The choice of number of links is extremely critical
Second Try: Dimensionality Reduction (Embedding)

- High-dimensional datasets can be very difficult to visualize. To aid visualization of the structure of a dataset, the dimension must be reduced in some way.

- Dimensionality Reduction methods were used for translating high-dimensional funding textual data into lower dimensional data;
State of Art: t-distributed stochastic neighbor embedding (t-SNE)

- t-SNE tends to preserve local structure and at the same time preserving the global structure as much as possible

- Others try to preserve the global structure but missed a lot of local details
t-SNE + LDA topics

- 7000 tf-idf features are too high (Dimensional disaster);
- Add a topic layer between tf-idf and 2d space;
- Now, 20 topics features embedding to 2d space;
- Well-separated clusters even in non-clustered data appeared on the map, even some sub-topics appeared in some larger cluster.

Graph funding map (Base map)

Embedding funding map
Applications of Funding Graph

Hotspots detection; Novelty detection
NASA Funding hotspots

• In the past 20 years, NASA SBIR has funded about 10,000 awards by ten centers;

• The funding map was created by using some method;

• We tried many clustering algorithms, hoping to divide awards into several clusters based on the map but the results were not good after experts interpretation.
• The map provides good local structure, so we decided to skip the traditional clustering, instead of putting each item into a topic, we tried to find the region with the highest density in the map.

• The high-density regions represent a large number of highly similar funded awards within a time period. We think they could represent the hotspots of research funding.

• The most commonly used method in GIS-the Kernel Density Estimation was used for finding hotspots on the map.
Novel application detection

- Funding agencies are more likely to support novel research.
- Unlike the network graph, embedding won’t lose the outliers (node without links), it will place the outlier at an appropriate position on the map even without any links.
- Some novelty/outlier detection methods can be used based on the funding map, such as one-class SVM, IsolationForest
Discussion
And the next step
Discussion

• Both graph and embedding funding maps are good at revealing the global structure;

• The embedding map has the capability for retaining the local structure of the funding data, it seems to display natural clusters and sub-clusters very well;

• Text representing cannot be too high, better features will get a better map;
 • Tf-idf, BM25, LSA, LDA, NMF, Word2vec average/sum, doc2vec, Deep learning network

• The cost of t-SNE algorithm is $O(n^2)$, not very fast and scalable;
Next step

• Try to apply the funding map with multiple funding agencies’ data, NSF/EURO Horizon 2020, maybe we will find some differences between counties and agencies;

• Test the method with other data sources, maybe patent or policy dataset;
Thanks. Any question?

Ting Chen
chenting@casisd.cn